HOMEWORK 2

Due date: Tuesday of Week 3

Ex: 4.3,5.1,5.3, 5.5, 5.6, 5.7,6.1, 6.2, 6.8, 7.1, 7.2, 7.5, 8.1, 8.2, 8.3, 8.4. Pages 355-357 of Artin’s
book.

Here are some terminologies. Let R be a ring. Two ideals I,J of R are called coprime (or
relatively prime) if I +J = R. (Recall that two positive integers m, n are called coprime if their ged

is 1, which is equivalent to (m) + (n) = Z. Thus the new definition agrees with the old one in the
case when R = 7).

Problem 1 (Chinese Remainder Theorem (Exercise 6.8)). Let I,J are two coprime ideals of R.
Show that
R/(INJ)X(R/I)x (R/J).

This is essentially Exercise 6.8. For example, if m,n are two relatively prime integers, we have
Z/(mn) 2 Z/(m) x Z/(n) as a ring. We learned this last semester.

Problem 2. (1) Let Ry, Rs be two rings and R = Ry x Rs. Show that there is a bijection
R* = R x RJ.
(2) Let p be a prime integer, show that |(Z/p*Z)*| = p* — pk~1.
(3) Letn be a positive integer and let (n) = |(Z/nZ)*|. Compute p(n), which can be interpreted
as the number of integers in {0,1,2,...,n — 1} which is coprime to n.
(4) Let a,n be two positive integers such that a is coprime to n. Show that ™ =1 mod n.
As a special case, if p is a prime number and if p{ a, then a?~' =1 mod p.

Hint for (2): Use Chinese remainder theorem to decompose Z/nZ into product of rings. The
function ¢(n) is called the Euler function. The congruence relation a?~' = 1 mod p is called
Fermat’s little theorem. The congruence a¥(™) =1 mod n is a generalized of Fermat’s little theorem
given by Euler.

Problem 3. Let I be an ideal of a ring R. Show that I is prime if and only if R/I is an integral
domain.

Problem 4. Let R be a ring and let x € R be a nilpotent element. Show that 1 + x is a unit.
Moreover, if u € R*, show that u+ x is also a unit.

Problem 5. Let R be a ring and let f = ap + a1z + - - - + a,2™ € R[z]. Show that
(1) feR[z]* iff ap € R* and a1, ..., a, are nilpotent.
(2) f is nilpotent iff ag,ax,...,a, are nilpotent.
(3) f is a zero divisor (which means there exists a nonzero g € R[x] such that fg =0) iff there
exists a # 0 in R such that af = 0.

This is Exercise 2 from the book Atiyah-Macdonald, Introduction to commutative algebra, Chap-
ter I. (Hint: For (1), if g = by + byz + - -+ + b, ™ is the inverse of f, prove by induction on r that
a;“‘lbm,r = 0. Hence show that a,, is nilpotent and then use the assertion of the last problem.)
(For (3), choose a polynomial g = by + byz + - - - + b, ™ of least degree m such that fg = 0. Then
anby, = 0. Note that deg(a,g) < deg(g) and a,gf = 0. The minimality of the degree of g shows
that a,g = 0. Then show a,_,g = 0 by induction on ).

Let R be a ring and S C R be a multiplicative set (which means 0 ¢ S and S is closed under
multiplication: Va,b € S, we have ab € S). Denote by S™!R the set of S-fractions, see Exercise 7.5
if R is an integral domain. More precisely, we define an equivalence relation ~ on the set R x S by

(rys) ~ (r',s") <= wu(r's —rs’) =0 for some u € S.
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Notice that if R is integral domain, the above equivalence relation is the same as r’'s = rs’, which
is given in Exercise 7.5. Similar to Exercise 7.5, ~ is an equivalence relation. Check this! For
a € R,s € S, we denote by a/s the equivalence class of (a,s). Let ST!R be the set of equivalence
classes, which has a natural ring structure defined as usual

a/s+ b/t = (at + bs)/(st),
(a/s)(b/t) = (ab)/(st).

Problem 6. Let p be a prime ideal of a ring R. Let S=R—p={x € R:x ¢ p}. Show that S is
a multiplicative set. The resulted ring S™'R will be denoted by R.

A ring R is called a local ring if it has exactly one maximal ideal m. The field R/m is called the
residue field of R.

Problem 7. (1) Let R be a ring and I be a maximal ideal of R. Suppose that for any x € 1,
1+ z is a unit in R. Show that R is a local ring and thus I is the unique mazximal ideal of
R.

(2) Let R be a ring and p be a prime ideal of R. Show that R, is a local ring with mazimal ideal
pR,. What is the relation between R/p and Ry, /pR,?

The local ring R, is called the localization of R at p.

Problem 8. Let p be a prime integer. Describe Ly, the localization of Z at the prime (p). Let n
be any nonzero integer. Describe the ideal nZy,) (the ideal of Z(y,) generated by n).

Problem 9. Let R be a ring and let m be a mazximal ideal of R. Show that m is prime.
Problem 10. Show that any vector space V over a field F has a basis using Zorn’s lemma.
See the appendix of Artin’s book, Proposition A.3.3, page 518.

Problem 11. Let R be a ring and I be an ideal of R such that I # R. Show that there ezists a
mazimal ideal m C R such that I C m C R.

This is covered in class. Please repeat the proof here.

Problem 12. Let R be a ring. Show that the nilradical of R is the intersection of all prime ideals
of R.

Hint: from last HW, we know that the nilradical is contained in the intersection of all prime
ideals. To show the converse, by contradiction, suppose that a is in the intersection of all prime
ideals, but not nilpotent. Consider the set of all ideals I such that o™ ¢ I for any n > 0. Using
Zorn’s lemma to show that there is a maximal ideal in S and show this maximal element is a prime
ideal.



