HOMEWORK 2

Due date: Tuesday of Week 3

Ex: 4.3, 5.1, 5.3, 5.5, 5.6, 5.7, 6.1, 6.2, 6.8, 7.1, 7.2, 7.5, 8.1, 8.2, 8.3, 8.4. Pages 355-357 of Artin's book.

Here are some terminologies. Let R be a ring. Two ideals I, J of R are called coprime (or relatively prime) if I + J = R. (Recall that two positive integers m, n are called coprime if their gcd is 1, which is equivalent to $(m) + (n) = \mathbb{Z}$. Thus the new definition agrees with the old one in the case when $R = \mathbb{Z}$).

Problem 1 (Chinese Remainder Theorem (Exercise 6.8)). Let I, J are two coprime ideals of R. Show that

$$R/(I \cap J) \cong (R/I) \times (R/J).$$

This is essentially Exercise 6.8. For example, if m, n are two relatively prime integers, we have $\mathbb{Z}/(mn) \cong \mathbb{Z}/(m) \times \mathbb{Z}/(n)$ as a ring. We learned this last semester.

- **Problem 2.** (1) Let R_1, R_2 be two rings and $R = R_1 \times R_2$. Show that there is a bijection $R^{\times} \cong R_1^{\times} \times R_2^{\times}$.
 - (2) Let p be a prime integer, show that $|(\mathbb{Z}/p^k\mathbb{Z})^{\times}| = p^k p^{k-1}$.
 - (3) Let n be a positive integer and let $\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$. Compute $\varphi(n)$, which can be interpreted as the number of integers in $\{0, 1, 2, ..., n-1\}$ which is coprime to n.
 - (4) Let a, n be two positive integers such that a is coprime to n. Show that a^{φ(n)} ≡ 1 mod n. As a special case, if p is a prime number and if p ∤ a, then a^{p-1} ≡ 1 mod p.

Hint for (2): Use Chinese remainder theorem to decompose $\mathbb{Z}/n\mathbb{Z}$ into product of rings. The function $\varphi(n)$ is called the Euler function. The congruence relation $a^{p-1} \equiv 1 \mod p$ is called Fermat's little theorem. The congruence $a^{\varphi(n)} \equiv 1 \mod n$ is a generalized of Fermat's little theorem given by Euler.

Problem 3. Let I be an ideal of a ring R. Show that I is prime if and only if R/I is an integral domain.

Problem 4. Let R be a ring and let $x \in R$ be a nilpotent element. Show that 1 + x is a unit. Moreover, if $u \in R^{\times}$, show that u + x is also a unit.

Problem 5. Let R be a ring and let $f = a_0 + a_1x + \cdots + a_nx^n \in R[x]$. Show that

- (1) $f \in R[x]^{\times}$ iff $a_0 \in R^{\times}$ and a_1, \ldots, a_n are nilpotent.
- (2) f is nilpotent iff a_0, a_1, \ldots, a_n are nilpotent.
- (3) f is a zero divisor (which means there exists a nonzero $g \in R[x]$ such that fg = 0) iff there exists $a \neq 0$ in R such that af = 0.

This is Exercise 2 from the book Atiyah-Macdonald, Introduction to commutative algebra, Chapter I. (Hint: For (1), if $g = b_0 + b_1 x + \dots + b_m x^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r} = 0$. Hence show that a_n is nilpotent and then use the assertion of the last problem.) (For (3), choose a polynomial $g = b_0 + b_1 x + \dots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$. Note that $deg(a_n g) < deg(g)$ and $a_n gf = 0$. The minimality of the degree of g shows that $a_n g = 0$. Then show $a_{n-r}g = 0$ by induction on r).

Let R be a ring and $S \subset R$ be a multiplicative set (which means $0 \notin S$ and S is closed under multiplication: $\forall a, b \in S$, we have $ab \in S$). Denote by $S^{-1}R$ the set of S-fractions, see Exercise 7.5 if R is an integral domain. More precisely, we define an equivalence relation \sim on the set $R \times S$ by

$$(r,s) \sim (r',s') \iff u(r's-rs') = 0$$
 for some $u \in S$.

Notice that if R is integral domain, the above equivalence relation is the same as r's = rs', which is given in Exercise 7.5. Similar to Exercise 7.5, \sim is an equivalence relation. Check this! For $a \in R, s \in S$, we denote by a/s the equivalence class of (a, s). Let $S^{-1}R$ be the set of equivalence classes, which has a natural ring structure defined as usual

$$a/s + b/t = (at + bs)/(st),$$

 $(a/s)(b/t) = (ab)/(st).$

Problem 6. Let \mathfrak{p} be a prime ideal of a ring R. Let $S = R - \mathfrak{p} = \{x \in R : x \notin \mathfrak{p}\}$. Show that S is a multiplicative set. The resulted ring $S^{-1}R$ will be denoted by $R_{\mathfrak{p}}$.

A ring R is called a local ring if it has exactly one maximal ideal \mathfrak{m} . The field R/\mathfrak{m} is called the residue field of R.

- **Problem 7.** (1) Let R be a ring and I be a maximal ideal of R. Suppose that for any $x \in I$, 1 + x is a unit in R. Show that R is a local ring and thus I is the unique maximal ideal of R.
 - (2) Let R be a ring and \mathfrak{p} be a prime ideal of R. Show that $R_{\mathfrak{p}}$ is a local ring with maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$. What is the relation between R/\mathfrak{p} and $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$?

The local ring $R_{\mathfrak{p}}$ is called the localization of R at \mathfrak{p} .

Problem 8. Let p be a prime integer. Describe $\mathbb{Z}_{(p)}$, the localization of \mathbb{Z} at the prime (p). Let n be any nonzero integer. Describe the ideal $n\mathbb{Z}_{(p)}$ (the ideal of $\mathbb{Z}_{(p)}$ generated by n).

Problem 9. Let R be a ring and let \mathfrak{m} be a maximal ideal of R. Show that \mathfrak{m} is prime.

Problem 10. Show that any vector space V over a field F has a basis using Zorn's lemma.

See the appendix of Artin's book, Proposition A.3.3, page 518.

Problem 11. Let R be a ring and I be an ideal of R such that $I \neq R$. Show that there exists a maximal ideal $\mathfrak{m} \subset R$ such that $I \subset \mathfrak{m} \subset R$.

This is covered in class. Please repeat the proof here.

Problem 12. Let R be a ring. Show that the nilradical of R is the intersection of all prime ideals of R.

Hint: from last HW, we know that the nilradical is contained in the intersection of all prime ideals. To show the converse, by contradiction, suppose that a is in the intersection of all prime ideals, but not nilpotent. Consider the set of all ideals I such that $a^n \notin I$ for any n > 0. Using Zorn's lemma to show that there is a maximal ideal in S and show this maximal element is a prime ideal.