
HOMEWORK 2

Due date: Tuesday of Week 3
Ex: 4.3, 5.1, 5.3, 5.5, 5.6, 5.7, 6.1, 6.2, 6.8, 7.1, 7.2, 7.5, 8.1, 8.2, 8.3, 8.4. Pages 355-357 of Artin’s

book.
Here are some terminologies. Let R be a ring. Two ideals I, J of R are called coprime (or

relatively prime) if I +J = R. (Recall that two positive integers m,n are called coprime if their gcd
is 1, which is equivalent to (m) + (n) = Z. Thus the new definition agrees with the old one in the
case when R = Z).

Problem 1 (Chinese Remainder Theorem (Exercise 6.8)). Let I, J are two coprime ideals of R.
Show that

R/(I ∩ J) ∼= (R/I)× (R/J).

This is essentially Exercise 6.8. For example, if m,n are two relatively prime integers, we have
Z/(mn) ∼= Z/(m)× Z/(n) as a ring. We learned this last semester.

Problem 2. (1) Let R1, R2 be two rings and R = R1 × R2. Show that there is a bijection
R× ∼= R×

1 ×R×
2 .

(2) Let p be a prime integer, show that |(Z/pkZ)×| = pk − pk−1.
(3) Let n be a positive integer and let φ(n) = |(Z/nZ)×|. Compute φ(n), which can be interpreted

as the number of integers in {0, 1, 2, . . . , n− 1} which is coprime to n.
(4) Let a, n be two positive integers such that a is coprime to n. Show that aφ(n) ≡ 1 mod n.

As a special case, if p is a prime number and if p ∤ a, then ap−1 ≡ 1 mod p.

Hint for (2): Use Chinese remainder theorem to decompose Z/nZ into product of rings. The
function φ(n) is called the Euler function. The congruence relation ap−1 ≡ 1 mod p is called
Fermat’s little theorem. The congruence aφ(n) ≡ 1 mod n is a generalized of Fermat’s little theorem
given by Euler.

Problem 3. Let I be an ideal of a ring R. Show that I is prime if and only if R/I is an integral
domain.

Problem 4. Let R be a ring and let x ∈ R be a nilpotent element. Show that 1 + x is a unit.
Moreover, if u ∈ R×, show that u+ x is also a unit.

Problem 5. Let R be a ring and let f = a0 + a1x+ · · ·+ anx
n ∈ R[x]. Show that

(1) f ∈ R[x]× iff a0 ∈ R× and a1, . . . , an are nilpotent.
(2) f is nilpotent iff a0, a1, . . . , an are nilpotent.
(3) f is a zero divisor (which means there exists a nonzero g ∈ R[x] such that fg = 0) iff there

exists a ̸= 0 in R such that af = 0.

This is Exercise 2 from the book Atiyah-Macdonald, Introduction to commutative algebra, Chap-
ter I. (Hint: For (1), if g = b0 + b1x+ · · ·+ bmxm is the inverse of f , prove by induction on r that
ar+1
n bm−r = 0. Hence show that an is nilpotent and then use the assertion of the last problem.)

(For (3), choose a polynomial g = b0 + b1x+ · · ·+ bmxm of least degree m such that fg = 0. Then
anbm = 0. Note that deg(ang) < deg(g) and angf = 0. The minimality of the degree of g shows
that ang = 0. Then show an−rg = 0 by induction on r).

Let R be a ring and S ⊂ R be a multiplicative set (which means 0 /∈ S and S is closed under
multiplication: ∀a, b ∈ S, we have ab ∈ S). Denote by S−1R the set of S-fractions, see Exercise 7.5
if R is an integral domain. More precisely, we define an equivalence relation ∼ on the set R× S by

(r, s) ∼ (r′, s′) ⇐⇒ u(r′s− rs′) = 0 for some u ∈ S.
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Notice that if R is integral domain, the above equivalence relation is the same as r′s = rs′, which
is given in Exercise 7.5. Similar to Exercise 7.5, ∼ is an equivalence relation. Check this! For
a ∈ R, s ∈ S, we denote by a/s the equivalence class of (a, s). Let S−1R be the set of equivalence
classes, which has a natural ring structure defined as usual

a/s+ b/t = (at+ bs)/(st),

(a/s)(b/t) = (ab)/(st).

Problem 6. Let p be a prime ideal of a ring R. Let S = R − p = {x ∈ R : x /∈ p}. Show that S is
a multiplicative set. The resulted ring S−1R will be denoted by Rp.

A ring R is called a local ring if it has exactly one maximal ideal m. The field R/m is called the
residue field of R.

Problem 7. (1) Let R be a ring and I be a maximal ideal of R. Suppose that for any x ∈ I,
1 + x is a unit in R. Show that R is a local ring and thus I is the unique maximal ideal of
R.

(2) Let R be a ring and p be a prime ideal of R. Show that Rp is a local ring with maximal ideal
pRp. What is the relation between R/p and Rp/pRp?

The local ring Rp is called the localization of R at p.

Problem 8. Let p be a prime integer. Describe Z(p), the localization of Z at the prime (p). Let n
be any nonzero integer. Describe the ideal nZ(p) (the ideal of Z(p) generated by n).

Problem 9. Let R be a ring and let m be a maximal ideal of R. Show that m is prime.

Problem 10. Show that any vector space V over a field F has a basis using Zorn’s lemma.

See the appendix of Artin’s book, Proposition A.3.3, page 518.

Problem 11. Let R be a ring and I be an ideal of R such that I ̸= R. Show that there exists a
maximal ideal m ⊂ R such that I ⊂ m ⊂ R.

This is covered in class. Please repeat the proof here.

Problem 12. Let R be a ring. Show that the nilradical of R is the intersection of all prime ideals
of R.

Hint: from last HW, we know that the nilradical is contained in the intersection of all prime
ideals. To show the converse, by contradiction, suppose that a is in the intersection of all prime
ideals, but not nilpotent. Consider the set of all ideals I such that an /∈ I for any n > 0. Using
Zorn’s lemma to show that there is a maximal ideal in S and show this maximal element is a prime
ideal.


